Billions of nanoplastic particles seep into mollusc organs within six hours

By: Clare Fischer
Date posted: 3 December 2018

A ground-breaking study has shown it takes a matter of hours for billions of minute plastic nanoparticles to become distributed throughout the major organs of a marine organism.

Scallop experiment
© University of Plymouth

These plastics are from a whole range of sources including those we use everyday

Dr Laura Foster

The research, led by the University of Plymouth, examined the uptake of nanoparticles by a commercially important mollusc, the great scallop (Pecten maximus).

After just six hours exposure in the laboratory, billions of particles measuring 250nm (around 0.00025mm) had accumulated mostly within the scallop intestine. However, considerably more, even smaller particles measuring 20nm (0.00002mm) had become dispersed throughout the body including the kidney, gill, muscle and other organs.

Nanoplastics begin life as large pieces of plastic before breaking down into microplastics and then even smaller nano pieces.

The study is the first to quantify the uptake of nanoparticles at predicted environmentally relevant conditions, with previous research having been conducted at far higher concentrations than scientists believe are found in our oceans.

Scallops were exposed to quantities of carbon-radiolabeled nanopolystyrene and after six hours, autoradiography was used to show the number of particles present in organs and tissue. It was also used to demonstrate that the 20nm particles were no longer detectable after 14 days, whereas 250nm particles took 48 days to disappear.

Dr Laura Foster, MCS Head of Clean Seas, said the research shows just why we have to stop plastic entering into our oceans: “We are increasingly seeing the impact that not just large pieces of plastic are having, but also the smaller pieces of plastic. The source of these microplastics is not only from products which contain small pieces of plastic in the first place, but also large pieces of plastic which breakdown into microplastics and then into nanoparticles.”

Dr Maya Al Sid Cheikh, a Postdoctoral Research Fellow at the University of Plymouth, who led the study said: “For this experiment, we needed to develop an entirely novel scientific approach. We made nanoparticles of plastic in our laboratories and incorporated a label so that we could trace the particles in the body of the scallop at environmentally relevant concentrations. The results of the study show for the first time that nanoparticles can be rapidly taken up by a marine organism, and that in just a few hours they become distributed across most of the major organs.”

Professor Richard Thompson OBE, Head of University of Plymouth’s International Marine Litter Research Unit said the study was ground-breaking in terms of both the scientific approach and the findings. “We only exposed the scallops to nanoparticles for a few hours and, despite them being transferred to clean conditions, traces were still present several weeks later.”

“Understanding the dynamics of nanoparticle uptake and release, as well as their distribution in body tissues, is essential if we are to understand any potential effects on organisms. A key next step will be to use this approach to guide research investigating any potential effects of nanoparticles and in particular to consider the consequences of longer-term exposures.”

Dr Laura Foster added: “These plastics are from a whole range of sources including those we use everyday. We’re urging people to reduce their single use plastic usage and support campaigns such as that for a Deposit Return Scheme which have been shown to be effective in stopping drinks bottles and cans escaping into the environment. The EU is currently discussing a range of measures to reduce the amount of single-use plastic that can get into our environment. MCS wants the UK government to set out its plan of action without further delay.”

The study also involved scientists from the Charles River Laboratories in Elphinstone, Scotland; the Institute Maurice la Montagne in Canada; and Heriot-Watt University.

It was conducted as part of RealRiskNano, a £1.1million project funded by the Natural Environment Research Council (NERC). Led by Heriot-Watt and Plymouth, it is exploring the effects which microscopic plastic particles can have on the marine environment.

Ted Henry, Professor of Environmental Toxicology at Heriot-Watt University, said:

“Understanding whether plastic particles are absorbed across biological membranes and accumulate within internal organs is critical for assessing the risk these particles pose to both organism and human health. The novel use of radiolabelled plastic particles pioneered in Plymouth provides the most compelling evidence to date on the level of absorption of plastic particles in a marine organism.”

Do you want to help #StopthePlasticTide? Your donation will fund our campaign to stop our marine wildlife from being choked, starved and poisoned and eliminate plastic pollution for good. We won’t let up. With your help we’ll continue to put pressure on governments, industry retailers and the public to act now on plastic pollution.

Actions you can take