Lobster, Norway, Langoustine, Dublin Bay prawn or scampi

Nephrops norvegicus

Method of production — Caught at sea
Capture method — Demersal otter trawl
Capture area — North East Atlantic (FAO 27)
Stock area — North Sea (Devil's Hole)
Stock detail — 4b, Functional Unit 34
CertificationFIP Stage 3
Picture of Lobster, Norway, Langoustine, Dublin Bay prawn or scampi

Sustainability rating three info

Sustainability overview

Updated: November 2020

The small Norway lobster is usually caught by trawling, often using nets with small mesh sizes, and therefore bycatch of other species and habitat impacts on the seabed are among the biggest concerns in these fisheries. In addition, management generally isn’t following scientific advice - with measures being across a wide area, rather than on a stock-by-stock basis, allowing catches to be above recommended levels in some places.

The Nephrops stock in Devil’s Hole is data limited. It is not known whether biomass is at a sustainable levels, but it appears to be increasing. Based on average landings in recent years, the stock does not seem to be subject to overfishing. However, management here is not applied at the functional unit level, and recent catches have been well above scientific advice. Landings in 2019 were particularly high, at 215% of the advised limits. Most of the Nephrops in Devil’s Hole are caught by trawlers using small meshed nets (70-99mm). Because of the small mesh size, bycatch of other species is of concern, although there are efforts to reduce bycatch levels. Trawling can also have impacts in the seabed.

A credible Fishery Improvement Project is underway to address some of the key concerns relating to management, bycatch and habitat impacts in this fishery.


Norway Lobster (also known as langoustine or scampi) live in burrows on the seabed. They are limited to a muddy habitat and require sediment with a silt and clay content to excavate burrows. Their distribution therefore is determined by the availability of suitable habitat. They occur over a wide area in the North East Atlantic, from Iceland to North Africa and into the Mediterranean, and constitute a valuable fishery for many countries. Males grow relatively quickly to around 6 cm, but seldom exceed 10 years old. Females grow more slowly and can reach 20 years old. Females mature at about 3 years. In the autumn they lay eggs which remain attached to the tail for 9 months (known as being “berried”). During this time the berried females rarely emerge from their burrows and therefore do not commonly appear in trawl catches, although they may be caught using baited creels. This habit of remaining in their burrows has probably afforded their populations some resilience to fishing pressure. Egg hatching occurs in the spring, and females emerge in spring/summer to moult and mate.

Stock information

Criterion score: 0.25 info

The Nephrops stock in Devil’s Hole is data limited. It is not known whether biomass is at a sustainable levels, but it appears to be increasing. Based on average landings in recent years, the stock does not seem to be subject to overfishing. Nephrops have a low vulnerability to fishing pressure (14 out of 100).

Nephrops population density is estimated by using underwater TV cameras (UWTV) to count the number of Nephrops burrows per square metre. UWTV surveys were carried out on this stock in 2003, 2005, 2009-2012, 2014-2015, and 2017-2019. Density declined from a peak of 0.28 individuals per sq. m in 2009 to around 0.1 in 2017, and then increased to 0.29 in 2019. This is the highest recorded value from those surveys. Landings for 2019 were the second highest on record, at 1,186 tonnes (a 272% increase in relation to 2018). This is accompanied by doubling of effort from 2018 (620 days) to 2019 (1,291 days). Even so, Landings per unit of Effort for 2019 are the highest on record. This indicates that the stock may be increasing, but whether it has yet reached a sustainable level is not defined. Average landings from 2020-2019 were within sustainable limits (harvest rate of 4%), while average landings for 2017-2019 equate to a harvest rate of 4.9%. However, the high landings of 2019 were 215% of the advised limits.

ICES advises that when the precautionary approach is applied, catches in each of the years 2021 and 2022 should not exceed 566 tonnes, assuming recent discard rates.

A 2011 study on Nephrops in the Clyde found a high prevalence of plastics and suggested that this could have implications for the health of the stock - this may have relevance for other Nephrops stocks. Some of the plastics were sourced to fishing waste. Studies have shown that the effects of climate change - warmer waters, reduced oxygen levels, higher ocean acidity, and higher levels of heavy metals - can negatively impact Nephrops’ larval development and make adults more susceptible to disease. Lower oxygen levels can also cause Nephrops to leave their burrows, making them easier to catch.


Criterion score: 0.75 info

There are multiple management measures and a variety of enforcement employed in the fishery, though the quota is not applied at the functional unit level and therefore, the stock is at risk of overfishing. Catches are above the recommended scientific advice.

Nephrops stock assessments are conducted by the International Council for the Exploration of the Sea (ICES). Stock assessments are produced for 33 areas across the Northeast Atlantic, called functional units. However, management is applied to a separate 18 areas, called management units. These management units broadly overlap with the functional units, but not very effectively. Vessels are free to move between grounds, allowing effort to develop on some grounds in a largely uncontrolled way and result in overfishing. Therefore, scientists have repeatedly advised over the years that management should be implemented at the functional unit level, to better protect the Nephrops. This should provide the controls to ensure that catch opportunities and effort are compatible and in line with the scale of the resources in each of the stocks: functional unit TAC management is only one way of managing the fisheries and other approaches may also deliver the required safeguards. However, this advice is not being followed.

This stock is covered by the EU’s North Sea Multi Annual management Plan (MAP), covering eleven FUs: 3-10 and 32-34. Rather than holding strictly to MSY-based reference points, the MAP includes upper and lower ranges for fishing pressure (F). The ranges for F are set at the Functional Unit level and FU-specific management measures can be introduced if individual Nephrops functional units are found to be below the sustainable abundance levels. For the stock in Devil’s Hole it is not possible to estimate abundance levels or FMSY ranges, therefore ICES continues to give catch advice based on the ICES precautionary approach. Average landings from 2015-2018 were 127% of the recommended, limits, but catches and effort doubled to 1,186 tonnes 2019, and landings were 215% of the advice.

The EU Landings Obligation (LO) came into force for Nephrops fisheries in the 80-99 mm trawl fisheries in 2016, and in 2019 it was extended to all species subject to catch limits. This means that individuals that are below the Minimum Conservation Reference Size (MCRS), as well as adults that are unwanted (e.g. over-quota), must be landed rather than discarded at sea. For Nephrops in the North Sea, MCRS is 25 mm carapace length (32mm for Denmark, Sweden and Norway). There are some exemptions, meaning a certain amount of Nephrops can still be discarded at sea (up to 6% de minimis in some fisheries; full exemptions where there is high survivability e.g. in pots or larger-meshed nets). The LO should increase both the number of small (below-MCRS) Nephrops and unwanted adults being landed, but throughout EU waters compliance with this regulation is generally poor and there is often no change in landings. It is estimated that average discards from the past 10 years have been around 6% of total catch, although there has been little or no observer coverage in this fishery since 2011.

The UK is the main producer of Norway lobster from the North Sea (74% of landings by weight in 2017). There are a series of technical measures for fishing gear for this fishery, set by the UK and the EU, relating to: mesh size, distance from the cod line, panel length (depending on engine power), and mesh construction. UK legislation also prohibits twin or multiple rig trawling with a diamond cod end mesh smaller than 100 mm in the North Sea south of 57.30 degrees N. Recent measures to reduce whitefish bycatch (e.g. cod) required vessels in the northern North Sea using mesh size of below 100mm to employ highly selective gears (HSG), e.g. Gamrie Bay Trawl or Faithlie Cod Avoidance Panel. In 2012 most vessels operating in the northern North Sea and the Farn Deeps fished exclusively with specified highly selective gears (reducing cod catches by 60% by weight) or had installed 200 mm square mesh panels.

This fishery is mainly large Scottish vessels, capable of operating in an offshore area such as Devil’s Hole.

Project UK is implementing Fishery Improvement Projects (FIPs) on eight UK fisheries that have been selected for their importance to the UK market. This includes trawl- and creel-caught Nephrops in the North Sea, Irish Sea, and West of Scotland (functional units 5-15 and 34). Aims include the development of functional-unit-based management (including Harvest Control Rules), improving the assessments of the various Nephrops stocks, better understanding and mitigation of the impact of the fishery on other species and habitats, improving compliance with the Landing Obligation, and better monitoring of the fishery. These improvements could go a long way to improving the sustainability of these fisheries. The FIP is in stage 3, indicating that implementation of the workplan has begun. It should be complete and ready to undergo assessment for Marine Stewardship Council certification in April 2024. It is transparently run, with meeting minutes and action plans being made available online. The FIP is currently on target, according to the latest Action Plan (April 2020). However, Functional-Unit-specific catch limits and days at sea limits have been ruled out as being unworkable for the industry. It remains to be seen if effective alternative measures can be implemented to ensure that stocks won’t be overexploited. Suggested measures include minimum landing sizes, restricting what fishing gear can be used, restricting vessel power or length, and closing parts of the functional units. Research is underway into the impact of the fishery on habitats and Endangered, Threatened and Protected species. Stock status for each FU is reviewed against MSC certification benchmarks annually. MCS considers this FIP to be credible.

Both the EU and UK have fishery management measures in place, which can include catch limits, targets for population sizes and fishing mortality, and controls on what fishing gear can be used and where. In the EU, compliance with regulations has been variable, and there are ongoing challenges with implementing some of them. There was a target for fishing to be at Maximum Sustainable Yield by 2020, but this was not achieved. The Landing Obligation (LO), an EU law that the UK has kept after Brexit, requires all fish and shellfish to be landed, even if they are unwanted (over-quota or below minimum size). It aims to promote more selective fishing methods, reduce bycatch, and improve recording of everything that is caught, not just what is wanted. Compliance with the LO is generally poor and actual levels of discards are difficult to quantify using the current fisheries observer programme.

In the UK, it is too early to tell how effective management is, as the Fisheries Act only came into force in January 2021. The Act requires the development of Fisheries Management Plans (FMPs) (replacing EU Multi-Annual Plans) but there are no details yet on how and when these will be developed. FMPs have the potential to be very important tools for managing UK fisheries, although data limitations may delay them for some stocks. MCS is keen to see FMPs for all commercially exploited stocks, especially where stocks are depleted, that include:
Targets for fishing pressure and biomass, and additional management when those targets are not being met
Timeframes for stock recovery
Technologies such as Remote Electronic Monitoring (REM) to support data collection and improve transparency and accountability
Consideration of wider environmental impacts of the fishery

Capture Information

Criterion score: 0.5 info

Most of the Nephrops in Devil’s Hole are caught by trawlers using small meshed nets (70-99mm). Because of the small mesh size, bycatch of other species is of concern, although there are efforts to reduce bycatch levels. Trawling can also have impacts in the seabed.

This species can be caught as part of a mixed demersal fishery, so bycatch can include cod, haddock, whiting, saithe, plaice and sole. In the North Sea, haddock and plaice are in a good state and fishing pressure is within sustainable levels. Saithe is in a good state, but fishing pressure is too high. Whiting is slightly below sustainable levels, and fishing pressure is too high. Sole is fluctuating around its lowest safe biological level, with fishing pressure at high levels. North Sea cod is in a very poor state, and fishing pressure is too high. Recent measures to reduce whitefish bycatch (e.g. cod) required vessels in the northern North Sea using mesh size of below 100mm to employ highly selective gears (HSG), e.g. Gamrie Bay Trawl or Faithlie Cod Avoidance Panel. In 2012 most vessels operating in the northern North Sea and the Farn Deeps fished exclusively with specified highly selective gears (reducing cod catches by 60% by weight) or had installed 200 mm square mesh panels. In 2018, Nephrops trawls accounted for approximately 7% of all North Sea cod catches.

Endangered, threatened and protected species caught in the catch can include some skates, rays and sharks. These species are relatively hardy, and can survive when they are discarded, but their survival rates largely depend on how they were caught and handled. Mortality rates in otter trawls are shown to vary between 10-65%, depending on fishing and handling methods. Those vessels which employ codes of conduct on skate and ray handling and/or reduce the risk of their capture, will improve their survival rates, though many of these methods aren’t implemented over whole functional unit or regional levels.

Nephrops are mainly found in soft mud habitats, which are also associated other burrowing animals like other crustaceans, bivalves (including the long-lived and slow-growing ocean quahog), and polychaete worms. They are also associated with emergent epifauna such as soft corals and seapens, which are vulnerable to interactions with bottom-towed fishing gear. Disturbance from trawl gear on the seabed, especially over long periods of time, is likely to affect the structure, species composition, and biodiversity of the burrowed mud community.

There are Marine Protected Areas (MPAs) in this Functional Unit, some of which are designated to protect seabed features from damaging activities. This Nephrops fishery overlaps with parts of these MPAs, but the proportion of the catch coming from these areas is expected to be relatively low in relation to the unit of assessment (i.e. less than 20% of the catch), and so these impacts have not been assessed within the scale of this rating. Given the important role that MPAs have in recovering the health and function of our seas, MCS encourages the supply chain to identify if their specific sources are being caught from within MPAs. If sources are suspected of coming from within designated and managed MPAs, MCS advises businesses to: establish if the fishing activity is operating legally inside a designated and managed MPA; and to request evidence from the fishery or managing authority to demonstrate that the activity is not damaging to protected features or a threat to the conservation objectives of the site(s).


BENTHIS. 2015. Deliverable 2.3: Benthic impact of fisheries in European waters: the distribution and intensity of bottom trawling. Available at: http://archimer.ifremer.fr/doc/00310/42138/54476.pdf [Accessed on 19.11.2020].

CruCSChange, 2015. The crustacean chemosensory system: Consequences of climate and environmental change. CruCSChange: EU Grant agreement ID: 331296. Available at https://cordis.europa.eu/article/id/182940-impact-of-environmental-change-on-norway-lobster [Accessed on 19.11.2020].

EU, 2018. Regulation 2018/973 establishing a multiannual plan for demersal stocks in the North Sea and the fisheries exploiting those stocks. Available at https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32018R0973 [Accessed on 17.11.2020].

Enever R., T.L. Catchpole T.L., Ellis. J.R., Grant A. The survival of skates (Rajidae) caught by demersal trawlers fishing in UK waters. Fisheries Research 97 (2009) 72-76

Hinz, H., Prieto, V., and Kaiser, M. J., 2009. Trawl disturbance on benthic communities: chronic effects and experimental predictions. Ecological Applications: A Publication of the Ecological Society of America, 19(3), 761-73. Available at http://www.ncbi.nlm.nih.gov/pubmed/19425437 [Accessed 23.09.2019].

ICES. 2020. Norway lobster (Nephrops norvegicus) in Division 4.b, Functional Unit 34 (central North Sea, Devil’s Hole). In Report of the ICES Advisory Committee, 2020. ICES Advice 2020, nep.fu.34. Available at https://doi.org/10.17895/ices.advice.5825 [Accessed on 25.11.2020].

ICES. 2020. Working Group on the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports, 2:61. 1140 pp. Available at http://doi.org/10.17895/ices.pub.6092 [Accessed on 17.11.2020].

Kingma, I. and Walker, P. Rays of Hope - Discard survival in North Sea Skates and Rays. ICES CM 2014/O:09. Available at: http://www.ices.dk/sites/pub/CM%20Doccuments/CM-2014/Theme%20Session%20O%20contributions/O0914.pdf

Mandelman J.W., Cicia, A.M., Ingram Jr, G.W. Driggers III, W.B., Coutreb, K.M. and Sulikowskib, J.A. Short-term post-release mortality of skates (family Rajidae) discarded in a western North Atlantic commercial otter trawl fishery. Fisheries Research 83 (2007) 238-245.

Murray and Cowie, 2011. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine Pollution Bulletin, 62: 6, pp.1207-1217. Available at doi: 10.1016/j.marpolbul.2011.03.032 [Accessed on 19.11.2020].

Palomares, M.L.D. and Pauly, D. (Editors), 2019. SeaLifeBase. Nephrops norvegicus: Norway lobster. Available at https://www.sealifebase.ca/summary/Nephrops-norvegicus.html [Accessed on 17.11.2020].

Russell, J. and Mardle, S. 2017. Analysis of Nephrops industry in Scotland. Final Report. Available at: http://www.sff.co.uk/wp-content/uploads/2017/10/AS-nephrops-FINAL-report-171017-ISSUED.pdf

Williams, C., and Carpenter, G. 2016. NEF working paper: The Scottish Nephrops fishery: Applying social, economic, and environmental criteria.

Wood, H., Eriksson, S., Nordborg, M., and Styf, H., 2015. The effect of environmental stressors on the early development of the Norway lobster Nephrops norvegicus (L.). Journal of Experimental Marine Biology and Ecology. 473. pp. 35-42. doi: 10.1016/j.jembe.2015.08.009.